
Dynamical Systems, Ergodicity, Poincaré Recurrence, and All That

A deterministic, time translationally invariant dynamical system is a quadruple
(X;B; �; �t), where X is the state space, � is a measure on X with �(X) = 1, B is
the set of measurable sets of X, and for each t 2 R, �t : X ! X is a one-one map.
It is required that the �t are measure preserving, i.e. for any A 2 B and for any
t 2 R, �(�t(A)) = �(A), and that they have the group property �t1+t2 = �t2 ��t1with
�t=0 = id and ��t = �

�1
t . Example: Let X = R6N be the usual (q; p) phase space for a

Hamiltonian system. Hamilton�s equations de�ne a deterministic �ow on phase space
that conserves volume relative to the measure d� = dqdp (Liouville�s Theorem). To
ensure that the measure normalizes, the regionX � R6N of the state space available to
the system has to be limited so that X has compact closure. This can be guaranteed,
for example, by con�ning the particles to a box, preventing the box from exchanging
energy with its environment, and requiring that the intra-particle interaction potential
is bounded from below. For such cases the relevant measure is � �cut down� to a
constant energy surface.

In this setting, time reversal invariance means that for every x 2 X and every t;
��t(

R[�t(x)]) =
Rx, where Rx stands for the reverse of x. For Hamiltonian dynamics

where x = (q; p), R(q; p) = (q;�p).
Poincaré recurrence theorem. In a dynamical system (X;B; �; �t), if A 2 B is any

measurable set, �(F ) = 0 where F := fx 2 A : �t(A) =2 A 8t > 0g.
A dynamical system is said to be ergodic just in case for any measurable A 2 B,

if �t(A) = A 8t, then either �(A) = 0 or �(A) = 1. An equivalent characterization of
ergodicity is the requirement that for any A 2 B where �(A) 6= 0 and for almost any
x 2 X, there is a t > 0 such that �t(x) \ A 6= 0.
Lemma 1. Ergodicity implies that for any A 2 B,

�(A) = lim
t!1

R t
0
IA(�t(x))dt

t

for almost any x 2 X, where IA(x) = 1 for x 2 A and 0 otherwise.
Lemma 2. Ergodicity implies that if �0 is any invariant measure that is absolutely

continuous with respect to � (i.e. for any A 2 B, �0(A) = 0 implies that �0(A) = 0),
then �0 = �.

A measure preserving dynamical system is said to be mixing just in case for any
A;B 2 B, limt!1 �(�t(A)\B) = �(A) ��(B). Mixing implies ergodicity but not vice
versa.
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The Logic of Boltzmann�s Explanation of the 2nd Law

Coarse graining. Choose a set fmg of macrostates for describing the outcomes of
measurements that can be made on the system with macroscopic instruments. It is
assumed that the macrostates supervene on the microstates, i.e. each m corresponds
to a measurable region M � X in the sense that at any time t, the system is in
macrostate m just in case the microstate state xt at t belongs to M . Close fmg
under Boolean operations to make a Boolean algebra fmgC , and de�ne a probability
measure on fmgC in the obvious way: for m 2 fmgC , Pr(m) := �(M).
Boltzmann entropy. Assume that for each x 2 X there is a �nest macrostate mf

2 fmgC actualized by the microstate x. Then (relative to the chosen coarse graining)
the Boltzmann entropy SB(t) of the system at t is

SB(t) := SB(m
f
t ) = k log(Pr(m

f
t )) = k log(�(M

f
t )

where mf
t is the �nest macrostate actualized by the microstate at t. From here on,

drop the superscript f .

The statistical version of the Second Law. What we want:

(B) Suppose that at t = 0 the Boltzmann entropy SB(0) of the system is
low; then for some appropriate t1 > 0, it is highly probable that SB(t1) >
SB(0).

Comments:
1) The truth of (B) depends on features of the microdynamics. In particular, for

(B) to be true, �t must be such that for the overwhelming majority of microstates
x in the region M0 corresponding to the low entropy initial macrostate m0 at t = 0,
the macrostate m1 at t = t1 that results from the evolution x 7�! �t1(x) corresponds
to a region M1 such that �(M1) >> �(M0). The quasi-law status of (B) rests on
the presumed fact that this feature of the microdynamics does obtain for the sorts
of systems we subject to thermodynamic analysis and for the sorts of coarse graining
relevant to explaining macroscopic observations made on these systems over time
periods of length comparable to the said t1.

2) What is the connection between the measure � and physical probability in a
propensity or a frequency sense? How does the presumed truth of (B) guarantee that
there is an objective tendency for the entropy to increase? Boltzmann realized that
a connection could be made between � and the limiting relative frequency sense of
probability if the system is ergodic. But are actual physical systems ergodic? Is some
sort of approximate ergodicity good enough?

3) Another worry focuses on the conditions of applicability of (B) to concrete
physical systems. One such condition is that for the system of interest, the microstate
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at t = 0 will be �typical�of the microstates compatible with the observed macrostate
at that time. The idea can be made more precise in the following Statistical Postulate.

(SP) Let mo be the macrostate at t = 0 of the system of interest. Then
the probability at t = 0 that the microstate of this system lies in some
measurable subset A �M0 of the state space region M0 � X correspond-
ing to m0 is �(A)=�(M0).

4) If (SP) is true at time t = 0, can it be true at a later time t1? The macrostate
m1 at t1 is such that the microstates in M1 that have evolved from the phase space
region M0 corresponding to the initial macrostate mo at t = 0 are only a small �-
fraction of the microstates of M1. This does not entail that the microstate at t1
cannot be typical of the microstates compatible with the macrostate at t1; for the
sense of typicality relevant to (SP), it su¢ ces that the microstates that have evolved
from the initial macrostate are su¢ ciently spread over the measurable subsets of M1.
Here the property of mixing can come to the rescue�if the system is mixing.

5) Even waiving 1)-4) there are two remaining problems with which Boltzmann
struggled:
a) the initial state problem�why was the system in a low entropy state to begin

with?
b) the time symmetry problem�given the presumed time reversal invariance of the

microdynamics, one would expect that if (B) is true, it should also be true that

(B�) Suppose that at t = 0 the Boltzmann entropy SB(0) of the system is
low; then for the t1 > 0 of (B) it is just as probable that SB(�t1) > SB(0)
as that SB(t1) > SB(0).

But if (B�) is correct to undermines the sorts of inferences we want to make about
the past.
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Boltzmann�s attempted solutions

(1) Cosmology to the rescue
The entire universe began in a low entropy state, and ever since the increase in

entropy has been monotonic, and the increase has been su¢ ciently slow as to leave
the present value of entropy well below its maximum.
Problem: What is this �beginning�? Boltzmann had no good answer. Does

modern Big Bang cosmology �ll the bill?

(2) Fluctuation hypothesis + anthropic principle
�If we assume the universe great enough, we can make the probability of one

relatively small part being in any given state (however far from the state of thermal
equilibrium) as great as we please. We can also make the probability great that,
though the whole universe is in thermal equilibrium, our world is in its present state.�
Problem: Boltzmann brain paradox.

(3) De�ne your way to a solution
�For the universe as a whole, the two directions of time are indistinguishable, just

as in space there is no up or down. However, just as at a particular place on the
earth�s surface we can call �down�the direction toward the center of the earth, so a
living being that �nds itself in such a world at a certain period of time can de�ne the
time direction as going from the less probable [lower entropy] to the more probable
[higher entropy] states (the former the former will be the �past�and the latter will
be the �future�) and by virtue of this de�nition he will �nd that this small region,
isolated from the rest of the universe, is "initially" always in an improbable [low
entropy] state.�
Problem: Theft over honest toil.
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